Function field analogues of Bang--Zsigmondy\'s theorem and Feit\'s theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bang-Bang theorem via Baire category. A Dual Approach

The paper develops a new approach to the classical bang-bang theorem in linear control theory, based on Baire category. Among all controls which steer the system from the origin to a given point x̄, we consider those which minimize an auxiliary linear functional φ. For all φ in a residual set, we show that the minimizing control is unique and takes values within a set of extreme points.

متن کامل

A short proof of a theorem of Bang and Koolen

Let a graph Γ be locally disjoint union of three copies of complete graphs Kq−1 and let Γ be cospectral with the Hamming graph H(3, q). Bang and Koolen [Asian-Eur. J. Math. 1 (2008), 147–156] proved that if q > 3, then Γ is isomorphic to H(3, q). We present a short proof of this result. AMS Mathematics Subject Classification (2000): 05C50, 05E30.

متن کامل

q-ANALOGUES OF EULER’S ODD=DISTINCT THEOREM

Two q-analogues of Euler’s theorem on integer partitions with odd or distinct parts are given. A q-lecture hall theorem is given.

متن کامل

Some Analogues of Glauberman's Z*-theorem

Let x be an element of prime order, p, in a finite group, G, and let P be a p-Sylow subgroup of G containing x. Say that x satisfies the unique conjugacy condition (u.c.c.) relative to G and the p-Sylow subgroup P if x is not conjugate in G to any other element of P. Let 02'(G) denote the largest normal subgroup of G oi odd order. Define the subgroup Z*(G) by the equation Z*(G)/0v(G)=Z(G/0v(G))...

متن کامل

The Contraction Mapping Theorem and the Implicit Function Theorem

denote the open ball of radius a centred on the origin in IR. If the function ~g : Ba → IR d obeys there is a constant G < 1 such that ‖~g(~x)− ~g(~y)‖ ≤ G ‖~x− ~y‖ for all ~x, ~y ∈ Ba (H1) ‖~g(~0)‖ < (1−G)a (H2) then the equation ~x = ~g(~x) has exactly one solution. Discussion of hypothesis (H1): Hypothesis (H1) is responsible for the word “Contraction” in the name of the theorem. Because G <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2016

ISSN: 0022-2518

DOI: 10.1512/iumj.2016.65.5930